Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Phytother Res ; 37(5): 1850-1863, 2023 May.
Article in English | MEDLINE | ID: covidwho-20245354

ABSTRACT

Evidence exists suggesting the anti-depressive activities of geniposide (GP), a major compound in Gardenia jasminoides Ellis. Accordingly, the present study attempts to explore the anti-depressive mechanism of GP in chronic unpredictable mild stress (CUMS)-induced depression-like behaviors of mice. CUMS-induced mice were given GP daily and subjected to behavioral tests to observe the effect of GP on the depression-like behaviors. It was noted that GP administration reduced depression-like behaviors in CUMS mice. Transcriptome sequencing was conducted in three control and three CUMS mice. Differentially expressed circRNAs, lncRNAs and mRNAs were then screened by bioinformatics analyses. Intersection analysis of the transcriptome sequencing results with the bioinformatics analysis results was followed to identify the candidate targets. We found that Gata2 alleviated depression-like behaviors via the metabolism- and synapse-related pathways. Gata2 was a target of miR-25-3p, which had binding sites to circ_0008405 and Oip5os1. circ_0008405 and Oip5os1 competitively bound to miR-25-3p to release the expression of Gata2. GP administration ameliorated depression-like behaviors in CUMS mice through regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks. Taken together, GP may exert a potential antidepressant-like effect on CUMS mice, which is ascribed to regulation of the circ_0008405/miR-25-3p/Gata2 and Oip5os1/miR-25-3p/Gata2 crosstalk networks.


Subject(s)
Depressive Disorder , MicroRNAs , Mice , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depressive Disorder/drug therapy , Depression/drug therapy , Depression/metabolism , MicroRNAs/metabolism , GATA2 Transcription Factor
2.
BMC Public Health ; 23(1): 1089, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20238814

ABSTRACT

BACKGROUND: Various nonpharmaceutical interventions (NPIs) against COVID-19 continue to have an impact on socioeconomic and population behaviour patterns. However, the effect of NPIs on notifiable infectious diseases remains inconclusive due to the variability of the disease spectrum, high-incidence endemic diseases and environmental factors across different geographical regions. Thus, it is of public health interest to explore the influence of NPIs on notifiable infectious diseases in Yinchuan, Northwest China. METHODS: Based on data on notifiable infectious diseases (NIDs), air pollutants, meteorological data, and the number of health institutional personnel in Yinchuan, we first fitted dynamic regression time series models to the incidence of NIDs from 2013 to 2019 and then estimated the incidence for 2020. Then, we compared the projected time series data with the observed incidence of NIDs in 2020. We calculated the relative reduction in NIDs at different emergency response levels in 2020 to identify the impacts of NIPs on NIDs in Yinchuan. RESULTS: A total of 15,711 cases of NIDs were reported in Yinchuan in 2020, which was 42.59% lower than the average annual number of cases from 2013 to 2019. Natural focal diseases and vector-borne infectious diseases showed an increasing trend, as the observed incidence in 2020 was 46.86% higher than the estimated cases. The observed number of cases changed in respiratory infectious diseases, intestinal infectious diseases and sexually transmitted or bloodborne diseases were 65.27%, 58.45% and 35.01% higher than the expected number, respectively. The NIDs with the highest reductions in each subgroup were hand, foot, and mouth disease (5854 cases), infectious diarrhoea (2157 cases) and scarlet fever (832 cases), respectively. In addition, it was also found that the expected relative reduction in NIDs in 2020 showed a decline across different emergency response levels, as the relative reduction dropped from 65.65% (95% CI: -65.86%, 80.84%) during the level 1 response to 52.72% (95% CI: 20.84%, 66.30%) during the level 3 response. CONCLUSIONS: The widespread implementation of NPIs in 2020 may have had significant inhibitory effects on the incidence of respiratory infectious diseases, intestinal infectious diseases and sexually transmitted or bloodborne diseases. The relative reduction in NIDs during different emergency response levels in 2020 showed a declining trend as the response level changed from level 1 to level 3. These results can serve as essential guidance for policy-makers and stakeholders to take specific actions to control infectious diseases and protect vulnerable populations in the future.


Subject(s)
COVID-19 , Communicable Diseases , Intestinal Diseases , Humans , Time Factors , COVID-19/epidemiology , Communicable Diseases/epidemiology , China/epidemiology , Incidence
3.
Stud Health Technol Inform ; 302: 408-412, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2326800

ABSTRACT

World Health Organization's (WHO) emergency learning platform OpenWHO provided by Hasso Plattner Institut (HPI) delivered online learning in real-time and in multiple languages during the COVID-19 pandemic. The challenge was to move from manual transcription and translation to automated to increase the speed and quantity of materials and languages available. TransPipe tool was introduced to facilitate this task. We describe the TransPipe development, analyze its functioning and report key results achieved. TransPipe successfully connects existing services and provides a suitable workflow to create and maintain video subtitles in different languages. By the end of 2022, the tool transcribed nearly 4,700 minutes of video content and translated 1,050,700 characters of video subtitles. Automated transcription and translation have enormous potential as a public health learning tool, allowing the near-simultaneous availability of video subtitles on OpenWHO in many languages, thus improving the usability of the learning materials in multiple languages for wider audiences.


Subject(s)
COVID-19 , Multilingualism , Humans , Pandemics , Language , Translating
4.
Diagnostic Microbiology and Infectious Disease ; : 115969, 2023.
Article in English | ScienceDirect | ID: covidwho-2311801

ABSTRACT

Patients undergoing hemodialysis (HD) are particularly vulnerable to coronavirus disease 2019 (COVID-19) and are at increased risk of developing severe infection. However, given the exclusion of such patients from clinical trials, there are limited data regarding the effectiveness of the antiviral drug nirmatrelvir/ritonavir (N/R) in patients on HD. We prescribed N/R to four patients on HD with COVID-19 after obtaining informed consent. Their clinical symptoms were improved at approximately 3 days after N/R administration. The viral load was reduced after approximately 10 days. The main adverse effects were nausea and vomiting. Rational dosage adjustment obtained good tolerance but did not influence the efficacy. These results suggest that N/R may be a promising agent for patients on HD with COVID-19.

5.
Vaccines (Basel) ; 11(4)2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2303657

ABSTRACT

The variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more transmissible, with a reduced sensitivity to vaccines targeting the original virus strain. Therefore, developing an effective vaccine against both the original SARS-CoV-2 strain and its variants is an urgent need. It is known that the receptor-binding domain (RBD) in the S protein of SARS-CoV-2 is an important vaccine target, but subunit vaccines usually have lower immunogenicity and efficacy. Thus, selecting appropriate adjuvants to enhance the immunogenicity of protein-based subunit vaccine antigens is necessary. Here, an RBD-Fc subunit vaccine of SARS-CoV-2 has been generated, followed by vaccination in B6 mice, and four adjuvant regimens were investigated, including aluminum salts (Alum) + 3-O-desacyl-4'-monophosphoryl lipid A (MPL), AddaVax, QS21 + MPL, and Imiquimod. The adjuvant potency was evaluated by comparing the elicited polyclonal antibodies titers with measuring binding to RBD and S protein in ELISA and Western blot analysis, and also the cross-neutralizing antibodies titers using a pseudovirus infection assay of hACE2-expressing 293T cells, with pseudoviruses expressing the S protein of the SARS-CoV-2 original strain and Delta strain. The presence of QS21 + MPL adjuvant induced stronger polyclonal antibody response and neutralization potency blocking the original strain and Delta strain, as compared with the non-adjuvant RBD-Fc group and other adjuvant groups. Meanwhile, Imiquimod even had a negative effect in inducing specific antibodies and cross-neutralizing antibody production as an adjuvant.

6.
Potato Res ; : 1-20, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2306540

ABSTRACT

Potatoes play an important role in ensuring food security. During the COVID-19 epidemic, consumption of processed potato products decreased, and consumption of fresh potatoes increased. China is the world's largest potato producer with more than 4.81 million hectares of area under potato production and 90.32 million metric tonnes of potatoes produced in 2018. This accounts for 27.36% of the world's planting area and 24.53% of the world's potato production. The proportion of potatoes processed in China was about 12% in 2017, mostly dominated by starch production. However, the recent policy of the Chinese government to popularise potato as a staple food has created new markets for processed potato products other than starch. A very few reports have analysed these future trends of the rapidly growing Chinese potato processing industry and its impact within and outside China. This paper provides an overview of the latest developments with a focus on processed potato products such as potato chips, French fries and dehydrated potatoes, and also, due to the unique Chinese diet culture, it highlights the need for more scientific research dedicated towards the development of novel potato-based healthy foods.

7.
Infect Dis Poverty ; 12(1): 17, 2023 Mar 14.
Article in English | MEDLINE | ID: covidwho-2288834

ABSTRACT

BACKGROUND: Data-driven research is a very important component of One Health. As the core part of the global One Health index (GOHI), the global One Health Intrinsic Drivers index (IDI) is a framework for evaluating the baseline conditions of human-animal-environment health. This study aims to assess the global performance in terms of GOH-IDI, compare it across different World Bank regions, and analyze the relationships between GOH-IDI and national economic levels. METHODS: The raw data among 146 countries were collected from authoritative databases and official reports in November 2021. Descriptive statistical analysis, data visualization and manipulation, Shapiro normality test and ridge maps were used to evaluate and identify the spatial and classificatory distribution of GOH-IDI. This paper uses the World Bank regional classification and the World Bank income groups to analyse the relationship between GOH-IDI and regional economic levels, and completes the case studies of representative countries. RESULTS: The performance of One Health Intrinsic Driver in 146 countries was evaluated. The mean (standard deviation, SD) score of GOH-IDI is 54.05 (4.95). The values (mean SD) of different regions are North America (60.44, 2.36), Europe and Central Asia (57.73, 3.29), Middle East and North Africa (57.02, 2.56), East Asia and Pacific (53.87, 5.22), Latin America and the Caribbean (53.75, 2.20), South Asia (52.45, 2.61) and sub-Saharan Africa (48.27, 2.48). Gross national income per capita was moderately correlated with GOH-IDI (R2 = 0.651, Deviance explained = 66.6%, P < 0.005). Low income countries have the best performance in some secondary indicators, including Non-communicable Diseases and Mental Health and Health risks. Five indicators are not statistically different at each economic level, including Animal Epidemic Disease, Animal Biodiversity, Air Quality and Climate Change, Land Resources and Environmental Biodiversity. CONCLUSIONS: The GOH-IDI is a crucial tool to evaluate the situation of One Health. There are inter-regional differences in GOH-IDI significantly at the worldwide level. The best performing region for GOH-IDI was North America and the worst was sub-Saharan Africa. There is a positive correlation between the GOH-IDI and country economic status, with high-income countries performing well in most indicators. GOH-IDI facilitates researchers' understanding of the multidimensional situation in each country and invests more attention in scientific questions that need to be addressed urgently.


Subject(s)
Global Health , Income , Animals , Humans , Socioeconomic Factors , Africa South of the Sahara , Latin America
8.
Environ Sci Pollut Res Int ; 30(19): 55278-55297, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2288813

ABSTRACT

The transmission of pollutants in buses has an important impact on personal exposure to airborne particles and spread of the COVID-19 epidemic in enclosed spaces. We conducted the following real-time field measurements inside buses: CO2, airborne particle concentration, temperature, and relative humidity data during peak and off-peak hours in spring and autumn. Correlation analysis was adopted to evaluate the dominant factors influencing CO2 and particle mass concentrations in the vehicle. The cumulative personal exposure dose to particulate matter and reproduction number were calculated for passengers on a one-way trip. The results showed the in-cabin CO2 concentrations, with 22.11% and 21.27% of the total time exceeding 1000 ppm in spring and autumn respectively. In-cabin PM2.5 mass concentration exceeded 35 µm/m3 by 57.35% and 86.42% in spring and autumn, respectively. CO2 concentration and the cumulative number of passengers were approximately linearly correlated in both seasons, with R value up to 0.896. The cumulative number of passengers had the most impact on PM2.5 mass concentration among tested parameters. The cumulative personal exposure dose to PM2.5 during a one-way trip in autumn was up to 43.13 µg. The average reproductive number throughout the one-way trip was 0.26; it was 0.57 under the assumed extreme environment. The results of this study provide an important basic theoretical guidance for the optimization of ventilation system design and operation strategies aimed at reducing multi-pollutant integrated health exposure and airborne particle infection (such as SARS-CoV-2) risks.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Environmental Pollutants , Humans , Carbon Dioxide/analysis , SARS-CoV-2 , Respiratory Aerosols and Droplets , Particulate Matter/analysis , Air Pollutants/analysis , Motor Vehicles , China , Environmental Pollutants/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
9.
Adv Biol (Weinh) ; : e2200310, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2263325

ABSTRACT

Carassius auratus complex formula (CACF) is a traditional Chinese medicine known for its antidiabetic effects. Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide, and there are currently no effective therapies for advanced HCC. This study explores the comprehensive effects and possible mechanisms of CACF on HCC. The results show that CACF reduces the viability of hepatoma cells in vitro, while benefiting normal hepatocytes. In addition, CACF inhibits hepatoma cell growth in a zebrafish xenotransplantation model and decreases lipid accumulation, represses inflammation and cell proliferation markers in fatty acid translocase (CD36) transgenic zebrafish, and inhibits the expression of cell proliferation and ß-catenin downstream targets in telomerase (tert) transgenic zebrafish models. Ingenuity Pathway Analysis reveals that CACF exerts multiple functions, including reduction of inflammation and inhibition of lipid transporter and PPAR signaling pathway. Surprisingly, CACF also regulates the expression of genes and reduces coronavirus infection and pathogenesis in a zebrafish model. CACF treatment is validated to regulate the expression of genes for anti-coronavirus activity. Mechanistically, CACF stabilizes G-quadruplex and reduces cell senescence associated ß-galactosidase activity. In summary, CACF may be a promising therapeutic agent with multiple functions including anticancer, anti-inflammation, and anti-microorganisms in a zebrafish model.

10.
Front Genet ; 14: 1105673, 2023.
Article in English | MEDLINE | ID: covidwho-2275447

ABSTRACT

Introduction: Within the inflammatory immune response to viral infection, the distribution and cell type-specific profiles of immune cell populations and the immune-mediated viral clearance pathways vary according to the specific virus. Uncovering the immunological similarities and differences between viral infections is critical to understanding disease progression and developing effective vaccines and therapies. Insight into COVID-19 disease progression has been bolstered by the integration of single-cell (sc)RNA-seq data from COVID-19 patients with data from related viruses to compare immune responses. Expanding this concept, we propose that a high-resolution, systematic comparison between immune cells from SARS-CoV-2 infection and an inflammatory infectious disease with a different pathophysiology will provide a more comprehensive picture of the viral clearance pathways that underscore immunological and clinical differences between infections. Methods: Using a novel consensus single-cell annotation method, we integrate previously published scRNA-seq data from 111,566 single PBMCs from 7 COVID-19, 10 HIV-1+, and 3 healthy patients into a unified cellular atlas. We compare in detail the phenotypic features and regulatory pathways in the major immune cell clusters. Results: While immune cells in both COVID-19 and HIV-1+ cohorts show shared inflammation and disrupted mitochondrial function, COVID-19 patients exhibit stronger humoral immunity, broader IFN-I signaling, elevated Rho GTPase and mTOR pathway activity, and downregulated mitophagy. Discussion: Our results indicate that differential IFN-I signaling regulates the distinct immune responses in the two diseases, revealing insight into fundamental disease biology and potential therapeutic candidates.

11.
Biosci Trends ; 17(2): 85-116, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2250322

ABSTRACT

Over three years have passed since the COVID-19 pandemic started. The dangerousness and impact of COVID-19 should definitely not be ignored or underestimated. Other than the symptoms of acute infection, the long-term symptoms associated with SARS-CoV-2 infection, which are referred to here as "sequelae of long COVID (LC)", are also a conspicuous global public health concern. Although such sequelae were well-documented, the understanding of and insights regarding LC-related sequelae remain inadequate due to the limitations of previous studies (the follow-up, methodological flaws, heterogeneity among studies, etc.). Notably, robust evidence regarding diagnosis and treatment of certain LC sequelae remain insufficient and has been a stumbling block to better management of these patients. This awkward situation motivated us to conduct this review. Here, we comprehensively reviewed the updated information, particularly focusing on clinical issues. We attempt to provide the latest information regarding LC-related sequelae by systematically reviewing the involvement of main organ systems. We also propose paths for future exploration based on available knowledge and the authors' clinical experience. We believe that these take-home messages will be helpful to gain insights into LC and ultimately benefit clinical practice in treating LC-related sequelae.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Pandemics , Public Health
12.
Poult Sci ; 102(3): 102398, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2232811

ABSTRACT

The Infectious Bronchitis Virus (IBV), a coronavirus, is a key avian pathogen that causes acute and highly infectious viral respiratory diseases. IBV is an enveloped, positive-sense RNA virus, and the host factors that restrict infection and replication of the virus remain poorly understood. Guanylate-binding protein 1 (GBP1), an interferon-gamma (IFN-γ)-inducible guanosine triphosphatase (GTPase), is a major player in host immunity and provides defense against viral replication. However, the role of chicken GBP1 (chGBP1) in the IBV-life cycle is not well understood. Therefore, this study aimed to reveal the potential role of IFN-γ-induced chGBP1 in mediating host anti-IBV infection responses. We identified the host restriction factor, chGBP1, in IBV-infected chicken macrophages HD11 cell lines. We showed that chGBP1 was upregulated by treatment with both IFN-γ and IBV in HD11 cells. chGBP1 inhibited IBV replication in a dose-dependent manner and enhanced IFN-γ anti-IBV activity. Importantly, the GTPase domain of chGBP1 played a pivotal role in its anti-IBV activity. Furthermore, chGBP1 interacts with IBV Nucleocapsids protein to degrade IBV-N protein through the autophagy pathway. Taken together, our results demonstrate a critical role of chGBP1 in anti-IBV in macrophages HD11 cells.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Coronavirus Infections/veterinary , GTP Phosphohydrolases , Virus Replication
14.
Medicine (Baltimore) ; 100(19): e25951, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-2191012

ABSTRACT

ABSTRACT: During outbreaks of the coronavirus disease 2019 (COVID-19), many countries adopted quarantine to slow the spread of the virus of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Quarantine will cause isolation from families, friends, and the public, which consequently leads to serious psychological pressure with potentially long-lasting effects on the quarantined population. Experience of specific practices to improve the psychological status of the mandatory quarantined population was limited. The aim of this study was to investigate the psychological impact of mandatory quarantine, and evaluate the effect of psychological intervention on the quarantined population.We conducted a prospective cohort study to assess and manage the psychological status of a mandatory quarantined population in Beijing, China. A total of 638 individuals completed 2 questionnaires and were enrolled in this study, of which 372 participants accepted designed psychological intervention while other 266 participants refused it. The SCL-90 questionnaire was used to evaluate the psychological status and its change before and after the intervention. The differences of SCL-90 factor scores between participants and the national norm group were assessed by 2 samples t test. While the SCL-90 factor scores before and after intervention were compared with 2 paired samples t test.Compared with the Chinese norms of SCL-90, the participants had higher SCL-90 factor scores in most items of the SCL-90 inventory. The SCL-90 factor scores of participants with psychological intervention significantly decreased in somatization, obsessive-compulsive, depression, anxiety, phobic anxiety, paranoid ideation, and psychoticism. In contrast, most factor scores of the SCL-90 inventory changed little without statistical significance in participants without psychological intervention.Psychological problems should be emphasized in the quarantined individuals and professional psychological intervention was a feasible approach to improve the psychological status of the mandatory quarantined population in the epidemic of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Mental Disorders/epidemiology , Mental Disorders/therapy , Mental Health/statistics & numerical data , Quarantine/psychology , Adult , Aged , China/epidemiology , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Socioeconomic Factors
15.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2188252

ABSTRACT

Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.


Subject(s)
Asthma , COVID-19 , Humans , Artificial Intelligence , ROC Curve , Software
16.
Infect Dis Poverty ; 11(1): 57, 2022 May 22.
Article in English | MEDLINE | ID: covidwho-1849786

ABSTRACT

BACKGROUND: A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS: We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS: The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8-65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS: GOHI-subject to rigorous validation-would represent the world's first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge.


Subject(s)
One Health , Forecasting , Global Health
17.
Infect Dis Poverty ; 11(1): 114, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2139424

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant is highly transmissible with potential immune escape. Hence, control measures are continuously being optimized to guard against large-scale coronavirus disease 2019 (COVID-19) outbreaks. This study aimed to explore the relationship between the intensity of control measures in response to different SARS-CoV-2 variants and the degree of outbreak control at city level. METHODS: A retrospective study was conducted in 49 cities with COVID-19 outbreaks between January 2020 and June 2022. Epidemiological data on COVID-19 were extracted from the National Health Commission, People's Republic of China, and the population flow data were sourced from the Baidu migration data provided by the Baidu platform. Outbreak control was quantified by calculating the degree of infection growth and the time-varying reproduction number ([Formula: see text]). The intensity of the outbreak response was quantified by calculating the reduction in population mobility during the outbreak period. Correlation and regression analyses of the intensity of the control measures and the degree of outbreak control for the Omicron variant and non-Omicron mutants were conducted, respectively. RESULTS: Overall, 65 outbreaks occurred in 49 cities in China from January 2020 to June 2022. Of them, 66.2% were Omicron outbreaks and 33.8% were non-Omicron outbreaks. The intensity of the control measures was positively correlated with the degree of outbreak control (r = 0.351, P = 0.03). The degree of reduction in population mobility was negatively correlated with the Rt value (r = - 0.612, P < 0.01). Therefore, under the same control measure intensity, the number of new daily Omicron infections was 6.04 times higher than those attributed to non-Omicron variants, and the Rt value of Omicron outbreaks was 2.6 times higher than that of non-Omicron variants. In addition, the duration of non-Omicron variant outbreaks was shorter than that of the outbreaks caused by the Omicron variant (23.0 ± 10.7, 32.9 ± 16.3, t = 2.243, P = 0.031). CONCLUSIONS: Greater intensity of control measures was associated with more effective outbreak control. Thus, in response to the Omicron variant, the management to restrict population movement should be used to control its spread quickly, especially in the case of community transmission occurs widely. Faster than is needed for non-Omicron variants, and decisive control measures should be imposed and dynamically adjusted in accordance with the evolving epidemic situation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cities/epidemiology , COVID-19/epidemiology , Retrospective Studies , Disease Outbreaks/prevention & control
19.
Medicine in Novel Technology and Devices ; : 100191, 2022.
Article in English | ScienceDirect | ID: covidwho-2105584

ABSTRACT

The study aims to grasp the hot spots and trends of global cardiopulmonary exercise research.Web of Science (WoS) core collection and Derwent Innovation Index database were retrieved to collect literature from 2002 to 2022 with Cardiopulmonary Exercise Test (CPET) as the retrieval theme. CiteSpace was used to conduct bibliometrics and visual analysis of 6679 pieces of literature in the web of science core collection database and 251 patent data in the Derwent Innovation Index database. The results show that: (1) the number of CPET theme research papers is increasing year by year, and the main research fields are cardiology, respiratory system, sports science, etc.;(2) The main research hot spots of CPET include exercise prescription, exercise and heart failure, COVID-19 cardiopulmonary rehabilitation and evaluation, etc.;(3) The development trend of CPET technology is majorly in the direction of intelligence, portability, individualization and the integration of Virtual Reality (VR) technology and evidence-based research of CPET guiding clinical decision-making.

20.
Potato research. ; : 1-20, 2022.
Article in English | EuropePMC | ID: covidwho-2073958

ABSTRACT

  Potatoes play an important role in ensuring food security. During the COVID-19 epidemic, consumption of processed potato products decreased, and consumption of fresh potatoes increased. China is the world’s largest potato producer with more than 4.81 million hectares of area under potato production and 90.32 million metric tonnes of potatoes produced in 2018. This accounts for 27.36% of the world’s planting area and 24.53% of the world’s potato production. The proportion of potatoes processed in China was about 12% in 2017, mostly dominated by starch production. However, the recent policy of the Chinese government to popularise potato as a staple food has created new markets for processed potato products other than starch. A very few reports have analysed these future trends of the rapidly growing Chinese potato processing industry and its impact within and outside China. This paper provides an overview of the latest developments with a focus on processed potato products such as potato chips, French fries and dehydrated potatoes, and also, due to the unique Chinese diet culture, it highlights the need for more scientific research dedicated towards the development of novel potato-based healthy foods.

SELECTION OF CITATIONS
SEARCH DETAIL